Combinatorics of non - ambiguous trees † ‡
نویسندگان
چکیده
This article investigates combinatorial properties of non-ambiguous trees. These objects we define may be seen either as binary trees drawn on a grid with some constraints, or as a subset of the tree-like tableaux previously defined by Aval, Boussicault and Nadeau. The enumeration of non-ambiguous trees satisfying some additional constraints allows us to give elegant combinatorial proofs of identities due to Carlitz, and to Ehrenborg and Steingrı́msson. We also provide a hook formula to count the number of non-ambiguous trees with a given underlying tree. Finally, we use non-ambiguous trees to describe a very natural bijection between parallelogram polyominoes and binary trees. Résumé. Cet article s’intéresse aux propriétés combinatoires des arbres non-ambigus. Ces objets, que nous définissons, peuvent être vus soit comme des arbres dessinés sur une grille sous certaines contraintes, soit comme un sous-ensemble des tableaux boisés précédemment définis par Aval, Boussicault et Nadeau. L’énumération des arbres non-ambigus satisfaisant des contraintes supplémentaires nous permet de donner des preuves combinatoires élégantes d’identités dues à Carlitz, et à Ehrenborg et Steingrı́msson. Nous donnons aussi une formule des équerres pour le comptage des arbres non-ambigus dont l’arbre sous-jacent est fixé. Enfin, nous utilisons les arbres non-ambigus pour décrire une bijection très naturelle entre polyominos parallélogrammes et arbres binaires.
منابع مشابه
The non-singularity of looped trees and complement of trees with diameter 5
A graph G is said to be singular if its adjacency matrix is singular; otherwise it is said to be non-singular. In this paper, we introduce a class of graphs called looped-trees, and find the determinant and the nonsingularity of looped-trees. Moreover, we determine the singularity or non-singularity of the complement of a certain class of trees with diameter 5 by using the results for looped-tr...
متن کاملFactorizations of Complete Graphs into Trees with at most Four Non-Leave Vertices
We give a complete characterization of trees with at most four non-leave vertices, which factorize the complete graph K2n.
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملOn trees and the multiplicative sum Zagreb index
For a graph $G$ with edge set $E(G)$, the multiplicative sum Zagreb index of $G$ is defined as$Pi^*(G)=Pi_{uvin E(G)}[d_G(u)+d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$.In this paper, we first introduce some graph transformations that decreasethis index. In application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb ...
متن کاملOn the extremal total irregularity index of n-vertex trees with fixed maximum degree
In the extension of irregularity indices, Abdo et. al. [1] defined the total irregu-larity of a graph G = (V, E) as irrt(G) = 21 Pu,v∈V (G) du − dv, where du denotesthe vertex degree of a vertex u ∈ V (G). In this paper, we investigate the totalirregularity of trees with bounded maximal degree Δ and state integer linear pro-gramming problem which gives standard information about extremal trees a...
متن کامل